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Regression Discontinuity: Starting Point

We want to estimate a treatment effect, but there is likely
selection bias.

The required assumption

E[Y0i |Di = 1] − E[Y0i |Di = 0] = 0

does not hold.

RD exploits settings where this assumption often holds
I arbitrary thresholds that determine treatment assignment
I typically regulatory thresholds
I Probability of treatment “jumps” at the discontinuity
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Regression Discontinuity

Examples for discontinuities
I Income thresholds for social benefits
I Cutoff rules for class sizes
I GPA thresholds for getting into college
I Special treatment for babies with <1500g birth weight
I ...

Basic idea
I At the threshold, the probability of treatment changes

sharply
I But nothing else changes
I Being above or below the threshold is as good as random
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RD lingo

The forcing variable X
I The variable that determines treatment assignment
I Also called assignment or running variable

The discontinuity X0

I threshold value of the running variable at which treatment
assignment jumps
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Example of a linear RD

The aim is to estimate the treatment effect (here τ) at the
discontinuity
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Sharp and Fuzzy Regression Discontinuity
Sharp RDD: treatment probability jumps at X0 from 0 to 1

Fuzzy RDD: treatment probability jumps at X0
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Example of a Sharp RDD: Carpenter & Dobkin (2009)
Observation: there is a spike in deaths around the 21st birthday

...but no difference around the 20th or 22nd birthday
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Example of a Sharp RDD: Carpenter & Dobkin (2009)

Carpenter & Dobkin (2009) investigate if this spike is due to the
legal drinking age (21 in US)

Idea: at 21, nothing changes except that people can drink legally

Sharp RD: age is the running variable

Da =

1, if a ≥ 21.

0, if a < 21.
(1)

Treatment status is a deterministic function of the running
variable
I if we know a, we know Da
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Example of a Sharp RDD: Carpenter & Dobkin (2009)
Simple RD analysis in a regression framework

death ratea = α+ ρDa + γa + ea
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Example of a Sharp RDD: Carpenter & Dobkin (2009)

Does the jump in the death rate ρ represent a causal effect?

Yes if Da is solely determined by a
I This is plausible in the given setting
I in this case there is no omitted variable bias
I no need to control for anything

Advantage of RDs: they are credible and transparent

Downside of RDs: they estimate local effects; difficult to
extrapolate
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Sharp RD: Formal Derivation (Angrist & Pischke, 2009,
ch. 6)

Treatment status Di is a deterministic function of xi with a
discontinuity at x0

Di =

{
1 if xi ≥ x0

0 if xi < x0

Assume a constant effects model

E [Y0i |xi] = α+ βxi

Y1i = Y0i + ρ
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Sharp RD: Formal Derivation (Angrist & Pischke, 2009,
ch. 6)

The corresponding regression is

Yi = α+ βxi + ρDi + ηi

Of if the trend relation E[Y0i |xi] is non-linear:

Yi = α+ f(xi) + ρDi + ηi

f(xi) modeled as a p-th order polynomial

Yi = α+ β1xi + β2x2
i + . . .+ βpxp

i + ρDi + ηi
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Sharp RD: Formal Derivation (Angrist & Pischke, 2009,
ch. 6)

Or allowing for separate trend functions for treated and untreated
observations

E [Y0i |xi] = f0 (xi) = α+ β01x̃i + β02x̃2
i + . . .+ β0p x̃p

i

E [Y1i |xi] = f1 (xi) = α+ ρ+ β11x̃i + β12x̃2
i + . . .+ β1p x̃p

i

with x̃i ≡ xi − x0

Use the fact that Di is a deterministic function of xi

E [Yi |xi] = E [Y0i |xi] + E [Y1i − Y0i |xi]Di
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Sharp RD: Formal Derivation (Angrist & Pischke, 2009,
ch. 6)

Substituting polynomials for conditional expectations yields the
regression

Yi =α+ β01x̃i + β02x̃2
i + . . .+ β0p x̃p

i

+ ρDi + β∗1Di x̃i + β∗2Di x̃2
i + . . .+ β∗pDi x̃

p
i + ηi

If we want to restrict the sample to a bandwidth δ

E [Yi |x0 − δ < xi < x0] ' E [Y0i |xi = x0]
E [Yi |x0 < xi < x0 + δ] ' E [Y1i |xi = x0]

...the estimate becomes

lim
δ→0

E [Yi |x0 < xi < x0 + δ]−E [Yi |x0 − δ < xi < x0] = E [Y1i − Y0i |xi = x0]
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RD: Importance of Functional Form

RDs don’t guarantee the estimation of a causal effect

Problem: what looks like a discontinuous jump may actually be an
increase in a non-linear function

It is important to
I distinguish between a true causal effect and an increase in

a non-linear trend
I assess (and model) the functional form between the running

variable and the outcome
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RD: Importance of Functional Form
Linear vs. quadratic function
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RD: Importance of Functional Form

Example of a spurious jump

In an RD paper, it is important to show the robustness of the
results to the choice of functional form
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RD: Importance of Functional Form

We can capture the curvature by including a quadratic in age

death ratea = α+ ρDa + γ1a + γ2a2 + ea

Problem: often the slope or curvature differs above and below
the cutoff

For example, below 21-year-olds are subject to minimum drinking
age laws
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RD: Importance of Functional Form

Two measures solve this problem
I center the running variable around the cutoff (i.e. use a − a0)
I add an interaction term (a − a0)Da

death ratea = α+ ρDa + γ(a − a0) + δ[(a − a0)Da ] + ea

This equation still identifies the effect at the cutoff (a = a0)
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RD: Importance of Functional Form

It is also possible to fit a polynomial on either side of the cut-off

death ratea = α+ ρDa + γ1(a − a0) + γ2(a − a0)
2

+ δ1[(a − a0)Da ] + δ2[(a − a0)
2Da ] + ea
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RD: Importance of Functional Form
Linear vs quadratic functional form in Carpenter & Dobkin (2009)

Treatment effect is larger with quadratic controls
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Overfitting? Crimes against Data?
Gelman & Zelizer (2015): polynomials can lead to overfitting
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Overfitting? Crimes against Data?

Overfitting
I There is often no scientific reason to have high-order

polynomials
I Overfitting: parameter estimates rely on too few data points
I Large weights are given to observations far away from the

discontinuity
I Genuine uncertainty from model dependence is not

reflected in standard errors

More on overfitting in RDs: Green et al. (2009), Gelman & Imbens
(2019)
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Bandwidth Selection

One method to reduce the likelihood of spurious effects is to
narrow the bandwidth

The bandwidth is the “window” below and above the cutoff

Idea:
I The closer we “zoom in” on the cutoff
I ...the lower is the chance of picking up a trend
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Bandwidth Selection

Trade-off in bandwidth selection
I smaller bandwidth⇒ smaller bias
I smaller bandwidth⇒ less precision

The graph on the following page illustrates two common methods

I (non-parametric) kernel density estimation
I local linear regressions

Optimal bandwidth selection is a very active area of research in
econometrics. See, for example, Imbens & Kalyanaraman (2012).
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Bandwidth Selection
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Bandwidth Selection

Simple local linear regression restricts the sample to
a0 − b ≤ a ≤ a0 + b

And estimates a linear regression in this window:

death ratea = α+ ρDa + γa + ea

Or, more commonly, we can allow for different slopes above and
below the cut-off

27 / 68



Fuzzy RDD

In a fuzzy RDD, the probability of treatment jumps at the cutoff

P[Di = 1|xi] =

g1(xi), if xi ≥ x0.

g0(xi), if xi < x0.

where g1(x0) , g0(xi)

This set-up is equivalent to an IV estimator
I The discontinuity is the instrument for the treatment
I If we control for the forcing variable, the assignment of the IV

is as good as random
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Fuzzy RDD

Simplest case: let Ti be the discontinuity and Di be the treatment

The (hypothetical) first stage is

Di = γ0 + γ1Xi + γ2Ti + ei

But because we often don’t observe the treatment, we estimate
the reduced form

yi = α+ βTi + δXi + ui
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Fuzzy RDD

Wald Estimator with a bandwidth of δ

lim
δ→0

E [Yi |x0 < xi < x0 + δ] − E [Yi |x0 − δ < xi < x0]

E [Di |x0 < xi < x0 + δ] − E [Di |x0 − δ < xi < x0]
= ρ
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Fuzzy RDD

Fuzzy RD becomes more tricky with interactions (treatment with
forcing variable)

⇒ need a separate IV and first stage for each term including Di

This means that one has as many instruments as there are terms
including Di

Rather than deriving this, we will look at an example: Angrist &
Lavy (1999)
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Fuzzy RD: Angrist & Lavy (1999)

Angrist & Lavy (1999) study the impact of class sizes on
student achievement

They exploit that class sizes in Israeli schools follow
Maimonides’ rule
I Class size is capped at 40
I If enrollment reaches 41, two classes are formed
I Three classes are formed if the enrollment reaches 80, etc

32 / 68



Fuzzy RD: Angrist & Lavy (1999)
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Fuzzy RD: Angrist & Lavy (1999)

Angrist & Lavy (1999) use the predicted class size as
instrument for the actual class size

Prediction is based on a mathematical formula (namely
Maimonides’ rule)

Not all schools fully comply, but most do

This is a classic example of a fuzzy RD
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Fuzzy RD: Angrist & Lavy (1999)

35 / 68



Fuzzy RD: Angrist & Lavy (1999)
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Fuzzy RD: Angrist & Lavy (1999)
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Fuzzy RD: Angrist & Lavy (1999)

I Table II shows OLS estimates: There is a positive correlation
between class size and test scores in the raw data. This
correlation vanishes when the fraction of disadvantaged
students is controlled for.

I Table IV shows the IV results, exploiting the regression
discontinuities created by Maimonides’ rule. The table
displays various specifications with no, linear, quadratic, and
piecewise linear controls for enrollment, as well as estimates
in subsamples around the discontinuity points.
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Fuzzy RD: Angrist & Lavy (1999)

I Controlling for enrollment is important, particularly for the
math test scores. The form of the control matters less.

I On the other hand, the discontinuity samples give larger
effects (in absolute values) than the full sample, which is less
comforting.

I Overall, they find that the IV estimates are larger than the
OLS estimates.

I The downward bias of OLS is plausible as it may be the case
that poorer performing students are placed in smaller classes.
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Regression Discontinuity: Comments

Regression Discontinuity has become one of the most popular
methods of causal inference

Some reasons:
I It’s easy to explain to non-economists
I The researcher is forced to show patterns in the data
I Identification assumptions can be inspected graphically
I It is often clear what drives the variation in the treatment

For useful practitioners’ guides, see Matias Cattaneo (Michigan)
and David Lee (Princeton)
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Challenge to Identification

As with any method of causal inference, RD rests on an
untestable identification assumption
I being above or below the cutoff is as good as random

This may not be true if there is manipulation
I people may be able to choose whether they are above or

below the cutoff
I teachers may grade people up, etc
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Example for Manipulation
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What Can/Should You Do?

There are non-parametric tests for heaping/bunching
I McCrary density test

Run placebo tests based on pre-treatment characteristics
I there should be no jump at the discontinuity
I if there is, that’s a problem

One solution: a donut hole estimator (leave out points close to the
discontinuity)
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RD: The Cookbook

3 General Rules: plot, plot, plot!

1) Explain the Identification Strategy
I why is there a discontinuity?
I and what is the treatment that changes?
I what is the scope for manipulation?

2) Produce and discuss the main graph
I Outcome plotted against the running variable
I Best to use binned scatters
I Important to find the right functional form
I Use practitioners’ guides, for example Lee & Lemieux (2010)
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RD: The Cookbook

Source: Lee & Lemieux (2010)
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RD: The Cookbook

Source: Lee & Lemieux (2010)
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RD: The Cookbook

3) Report estimates based on different methods
I careful when using polynomials
I local linear regression
I kernel methods

4) Density and placebo tests
I Inspect if there is heaping at the discontinuity
I Run a McCrary density test
I Plot pre-treatment characteristics against the running variable
I Check out the latest literature. If you don’t run the latest tests,

your referees will ask you to (If you’re lucky)...
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RD: The Cookbook

Source: Lee & Lemieux (2010)
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New Developments in RDD

Extrapolation away from the discontinuity
I Cattaneo et al. (2020): extrapolation based on multiple

cut-offs

Disentangling multiple treatments at the discontinuity (Gilraine,
2020)

RDD and machine learning: coming soon...
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The Regression Kink Design
Main Source: Card et al. (2015)
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The Regression Kink Design

Card et al. (2015) introduced the Regression Kink Design (RKD)

Difference to RDD
I RDD exploits a jump in the probability of treatment
I RKD exploits a kink in the likelihood of being treated
I ...i.e. a sudden change in the first derivative of the

assignment function
I ...which is often a kink in a policy rule

If the likelihood of treatment exhibits a kink, can we also see a
kink in the outcome?
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RKD Example I: Subsidies for Medication

Source: Simonsen et al. (2016)
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RKD Example II: Unemployment Benefits

Source: Landais (2015)
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RKD Example II: Unemployment Benefits
Is there a kink in the outcome?

Source: Landais (2015)
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The RKD Estimand (Card et al., 2015)

Assume a linear model

Y = τB + g(V) + ε

B = b(V) is a deterministic function of V with a kink at V = 0

Numerator: difference in outcome above and below kink
Denominator: first stage
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RKD Identification (Card et al., 2015)

Basic idea: units above and below the kink are similar
I assignment above/below as good as random

Identification assumptions

1. The density of the assignment variable is smooth at the
kink point

2. The treatment assignment rule is continuous at the kink
point

Units need not perfectly comply⇒ fuzzy RKD
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The Smooth Density Condition

People/firms should not be able to manipulate their position
I No bunching at the kink point
I Card et al. (2015) allow for small amounts of bunching

Covariates should be continuous at the kink
I this is a diagnostics check

57 / 68



The Continuity Condition

Simply put, a setting with a discontinuous jump is no RKD

The RKD requires a kink but no jump

If there is a jump, one can use RDD
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Estimation of a Sharp RKD

Card et al. (2015) show that it is sufficient to consider the effect
of V on Y

Linear regression with a polynomial up to order p and
D = 1(V ≥ v0)

E[Y |V = v] = µ0 +

 p∑
p=1

γp(v − v0)
p + νp(v − v0)

p · D



Coefficients of interest: νp (kinks in outcome)
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Estimation of a Fuzzy RKD

In a fuzzy RKD, the first stage is no longer deterministic

Need to estimate the reduced form (previous slide) and the first
stage

E[B |V = v] = µ0 +

 p∑
p=1

δp(v − v0)
p + κp(v − v0)

p · D



Obtain coefficient by dividing the RF by the FS τ =
νp
κp

Estimate standard errors by bootstrap
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Estimation: Refinements

RKD has similar refinements to RDD
I local linear regression vs. polynomial regression
I Parametric vs. non-parametric methods
I estimates may depend on bandwidth
I Can apply optimal bandwidth selection (Calonico et al., 2014)

RKD is a new methodology; more refinements to follow
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Example: Unemployment Benefits in Austria (Card et al.,
2015)

UI benefits: 55% of net daily earnings up to a cap
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Earnings are Smooth around the Kink
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Effect on Unemployment Duration
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Effect is Robust to Bandwidth Selection
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A Note on Inference

Ganong & Jäger (2018) show that conventional SEs
underestimate the uncertainty in RKD designs

Problem: polynomial regressions may yield spurious effects

They propose a permutation test
I Run local linear regressions in areas without a kink
I Use the empirical distribution for hypothesis tests
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RKD summary

RKD is a welcome addition to the causal inference toolbox
I Straightforward to implement
I Allows for the estimation of important behavioral elasticities

The intuition is similar to RDD

Requirement: very detailed data!
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