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Difference-in-Differences

Angrist & Pischke (2009, ch. 5)
Cunningham (2020, ch. 9)
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This Lecture

Builds upon the introduction to Diff-in-Diff in Econometrics I

Methodological refinements
I Diff-in-Diff with a continuous treatment
I Semi-parametric Diff-in-Diffs
I Event studies (Staggered adoption designs)
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Classic Diff-in-Diff (Card & Krueger, 1994)

year

Employment

Employment trend
Pennsylvania

1992

Employment trend NJ
without treatment

Employment trend NJ
with treatment

Treatment 
effect
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The Simple 2 × 2 Model

The simple DiD is a comparison of two groups before and after

δ̂2×2
kU =

(
ypost(k)

k − ypre(k)
k

)
−

(
ypost(k)

U − ypre(k)
U

)

k Treated group
U Untreated group
pre(k) periods before group k was treated
post(k) periods after group k was treated
δ̂2×2

kU ATT for group k
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What does the estimated parameter δ̂2×2
kU map onto?

Simple DiD rewritten as a conditional expectation

δ̂2×2
kU =

(
E
[
Yk | Post

]
−E

[
Yk | Pre

])
−

(
E
[
YU | Post

]
−E

[
YU | Pre

])

One can show that (in potential outcomes notation), the estimated
effect equals

δ̂2×2
kU = E

[
Y1

k | Post
]
− E

[
Y0

k | Post
]︸                                ︷︷                                ︸

ATT

+
[
E
[
Y0

k | Post
]
− E

[
Y0

k | Pre
]]
−

[
E
[
Y0

U | Post
]
− E

[
Y0

U | Pre
]

︸                                                                            ︷︷                                                                            ︸
Non-parallel trends bias in 2 × 2 case

]
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Challenge of DiD: Parallel Trends Assumption

We can only obtain an unbiased estimate of the ATT if[
E
[
Y0

k | Post
]
− E

[
Y0

k | Pre
]]
−

[
E
[
Y0

U | Post
]
− E

[
Y0

U | Pre
]

︸                                                                            ︷︷                                                                            ︸
Non-parallel trends bias in 2 × 2 case

]
= 0

The Parallel Trends Assumption is an identifying assumption
I We cannot prove that it is true
I We don’t observe the counterfactual outcome Y0

k | Post
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The 2 × 2 DiD in Card & Krueger (1994)
The minimum wage in NJ bites
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The 2 × 2 DiD in Card & Krueger (1994)

ATT of interest:

δ̂2×2
NJ,PA = E

[
Y1

NJ | Post
]
− E

[
Y0

NJ | Post
]︸                                   ︷︷                                   ︸

ATT

+
[
E
[
Y0

NJ | Post
]
− E

[
Y0

NJ | Pre
]]
−

[
E
[
Y0

PA | Post
]
− E

[
Y0

PA | Pre
]

︸                                                                                  ︷︷                                                                                  ︸
Non-parallel trends bias

]

With constant state and time effects, this maps into the
regression

Yits = α + γNJs + λDt + δ(NJ × D)st + εits
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The 2 × 2 DiD in Card & Krueger (1994)

Does δ̂2×2
NJ,PA = 2.76 mean that the minimum wage raised

employment?
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Supporting Evidence: Parallel Trends Assumption

Visual inspection is key!
I If you can, plot the raw data (see the Mixtape for some

examples)

More than two periods: check if pre-trends are parallel
I This is a common diagnostic check
I It is neither a necessary nor a sufficient conditions for parallel

trends after treatment (Freyaldenhoven et al., 2019;
Kahn-Lang & Lang, 2020)
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Diff-in-Diff with Multiple Groups and Periods

The basic model is often extended, allowing for multiple groups
and periods,

Yigt = γg + postt + δ(Dg × postt ) + εigt

units i in groups g and periods t

γg Group fixed effects
postt Dummy for post-treatment periods

This model still assumes that all treated groups are treated at
the same time.

In many cases, each unit is its own group (e.g. state-level panels in
the US)⇒ we will assume this from now on
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More General: Two-way FE models

A more general DiD estimator also allows for differential
treatment timing (staggered adoption).

This is typically done through a two-way fixed effect model:

Yit = γi + γt + δ 1(t > t∗i ) + εit

γi Unit fixed effects
γt Period fixed effects
t∗i Period when treatment of unit i starts
1(t > t∗i ) Dummy = 1 if unit i and the period is post treatment

Assumption here: once treated, units remain treated
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Flexible Two-way FE DiD (Event Study)

We can also incorporate j leads and j̄ lags before/after treatment
kicks in (event)

Yit = γi + γt +

j̄∑
j=j

δjDjit + εit ,

The event dummies around the event window [j, j̄], with j < 0 are
defined as

Djst =


1 [t ≤ Event s + j] if j = j
1 [t = Event s + j] if j < j < j̄
1 [t ≥ Event s + j] if j = j̄

Note: in the literature you find other specifications called “Event
Study”; we will revisit this later
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Flexible Two-way FE DiD: event window and binning

A recent paper by Schmidheiny & Siegloch (2020) clarifies two
important aspects of event studies

1) The choice of the event window can affect the estimates
I The length of the event window affects the weights of the OLS

estimator

2) Binning of observations before the first lead and after the
last lag?
I The treatment dummies before the first lead are coded as 0
I Those after the last lag are coded as 1
I Binning is critical for causal identification
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Some Comments on Two-way FE DiD

The identification of δ is based on variation within groups over
time

This model is extremely popular in applied research
I 100s of papers on the roll-out of policies across US states
I Appeal of the model: identification assumption easier to

defend because of unit fixed effects

But there is a problem: it is not clear how δ (or δj) can be
interpreted
I Many researchers interpret it like the 2 × 2 DiD estimator
I As we will see later, this interpretation is often misleading

16 / 83



Event Study Example (Autor, 2003)

The effect of EPL on temporary employment

Exploits court rulings that happened in different states 1979-1995
I Identification comes from differential timing
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DiD with a Continuous Treatment

Most textbook DiD examples are based on a binary treatment

But it is also possible to have a continous treatment

In this case the treatment intensity differs between units

Useful/important: can check for parallel trends before treatment
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DiD with a Continuous Treatment

Duflo (2001) studies the effect of a school construction program
in Indonesia

I Between 1973 and 1978 massive school construction program
I Number of schools/population varied across regions and time
I More school were built in areas with low enrolment rates
I Some cohorts were too old to benefit from the program

Identification
I Compare older and younger cohorts
I In areas with different treatment intensity
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DiD with a Continuous Treatment

Basic regression in Duflo (2001): compares two cohorts (young
and old)

i: individual; j: region of birth; k: cohort of birth

Sijk level of schooling
α1j region of birth FE
β1k birth cohort FE
Pj program intensity
Ti treatment dummy (young)
Cj region-specific variables
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DiD with a Continuous Treatment

Flexible DiD

i: individual; j: region of birth; k: cohort of birth

dil age t dummies

Identification:
I Comes from across regions across cohorts (i.e. relative to

older cohorts, younger cohorts in some regions had more
schools to go to than in other regions)

I Assumption: within a region, the assignment of treatment
across groups was as good as random
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DiD with a Continuous Treatment

Main result in Duflo (2001)
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Event Study Design: Lafortune et al. (2018)

Paper evaluates the school finance reforms (SFR) in the US in the
1990s

After court rulings, multiple states changed their funding model
I initially large heterogeneity in school finances
I 1980s SFR: equity-based; all students should get the same

resources
I 1990s SFR: adequacy rules: more resources for low-income

districts

They study the effect of the 1990s school reforms on
standardized test scores
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Identification

They use an event study design
I between 1990 and 2011 there were 64 reforms in 26 states
I they compare standardized test scores within states before

and after the reform

Diff-in-diff logic: did test scores increase in states with a reform
relative to states without a reform?

Idenfitication assumptions:
I in absence of the reform, test scores would have been the

same in states with and without a reform
I the timing of the reform is as good as random
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Simple Event Study Design

θst = δs + κt + 1(t > t∗s )βjump + εst

s: state; t: year

t∗s time of the event
θst outcome (test scores, etc)
δs , κt state and year effects

βjump represents the difference-in-differences estimator (state s
relative to all other states)
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Parametric Event Study Design

Lafortune et al. (2018) develop a useful parametric extension to
the standard diff-in-diff model

They consider three parameters
I the trend in the outcome before the event
I the jump at the time of the event
I the trend after the event

θst = δs+κt +1(t > t∗s )βjump+1(t > t∗s )(t−t∗s )βphasein+(t−t∗s )βtrend+εst
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Parametric Event Study Design
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Non-parametric Event Study Design

They also estimate (standard) non-parametric event study
designs

θst = δs + κt +
kmax∑

r=kmin ,r,0

1(t = t∗s + r)βr + εst

The dummy variables 1(t = t∗s + r) represent leads and lags for
each event

The coefficients of interest are βr

I difference in the outcome relative to the event year
I ...relative to states without an event
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Parametric vs. Non-parametric Designs

The non-parametric design has the advantage of being flexible
I no restriction of trends before and after the event
I allows to study dynamic adjustments

Disadvantage: non-parametric designs are demanding on the
data
I need to estimate many lead and lag coefficients

Advantage of stepwise parametric approach
I only need to estimate three parameters
I easy to put a number on the effects
I enough to model trend after the event
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Effect on School Finances

Districts in lowest 20%
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Effect on School Finances
Districts in highest 20%
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Effect on Test Scores

The parametric results are useful in regression tables
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Lessons from Lafortune et al. (2018)

Clean and intuitive event study design

Shows the usefulness of parametric and non-parametric
methods

Quantifies the policy effect⇒ useful for cost-benefit analysis
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More on Supporting Evidence of the Identification
Assumptions

Parallel pre-trends are one (commonly used) diagnostic test

It is also helpful to run placebo tests
I There should be no effect on units that are plausibly

unaffected by treatment
I If there is an effect, this may indicate a violation of parallel

trends
I Your estimator is probably picking up some underlying trends

Plausibly unaffected units can also form an additional control
group in a triple difference design (DDD)
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Triple Differences

Idea: compare two difference-in-differences

1. Units plausibly affected by treatment (some treated but not
others)

2. Units plausibly unaffected by treatment (some “treated” but
not others)

Minimum wage example (NJ & PA):

1. Workers in fast-food restaurants are plausibly affected by a
MW change

2. Workers with a college degree are plausibly unffected by a
MW change (under assumptions...)

⇒ allows us to difference out state-specific shocks
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Triple Differences: Regression Model

Yijt = α + β1τt + β2δj + β3Di︸                  ︷︷                  ︸
FE for period, treated DD and unit

+ β4(δ × τ)jt + β5(τ × D)ti + β6(δ × D)ij︸                                             ︷︷                                             ︸
Two-way interactions

+ β7(δ × τ × D)ijt︸             ︷︷             ︸
Triple Difference

+εijt

In the MW example, β7 represents the difference between
I Fast-food workers in NJ (treated) vs PA (non-treated)⇒ Diff 1
I Before and after the change⇒ Diff 2
I Relative to the differences 1 and 2 among unaffected workers
⇒ Diff 3
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DDD Example: Immigration and Native Labor Supply

Cortés & Pan (2013): domestic outsourcing

Question: does (low-skilled) immigration affect native labor supply?

I Recruitment policy of foreign domestic workers
I in Hong Kong in the 1970s
I High inflow of FDWs, mainly from Philippines and Thailand
I Taiwan serves as “control country”
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DDD Example: Immigration and Native Labor Supply

Cortés & Pan (JOLE, 2013): FDW became cheaper

X: average wage, triangle: relative price of FDW
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DDD Example: Immigration and Native Labor Supply

Cortés & Pan (JOLE, 2013): increase in FDW
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DDD Example: Immigration and Native Labor Supply

Identification through triple differences
I Difference 1: women with and without school-age children
I Difference 2: before and after the reform
I Difference 3: difference in 1 and 2 between Hong Kong

(treated) and Taiwan (non-treated)
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DDD Example: Immigration and Native Labor Supply

Cortés & Pan (JOLE, 2013): domestic outsourcing
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Triple Differences

Cortés & Pan (2013) is a good example for the use of triple
differences
I DiD not invalid because of differential time trends between

treated and control units
I DDD allows them to difference out these time trends

General advice:
I Not advisable: DDD is the main result
I Much harder to interpret compared to DD
I Best to show DD first and use DDD as a robustness test
I (Probably) not suitable for staggered adoption designs
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Conceptual Problem with DiD: What Do We Compare
with What?

The canonical DiD model is a two-way FE regression

yit = αi . + α·t + βDDDit + eit

Dit = 1 if a unit has been treated in period t or before

Textbook DiD: units are treated at the same time

But when the treatment timing differs between units...
I As is the case in many studies?
I What do we compare with what?
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Conceptual Problem with DiD: What Do We Compare
with What?

Big problem: researchers often interpret βDD just like in the
2 × 2 case
I This interpretation is akin to the ATT

Several recent papers highlight these problems and provide
solutions
I Goodman-Bacon (2018), Callaway & Sant’Anna (2020),

de Chaisemartin & D’Haultfoeuille (2019), Abraham & Sun
(forthcoming), . . .

I General problem I: βDD is a (very strange) weighted
average, s.t. βDD , ATT

I General problem II: Treatment effects may be
heterogeneous across groups and over time
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The Bacon Decomposition

Goodman-Bacon (2018) proposes a decomposition of βDD for
the staggered adoption design

Paper points to several challenges for estimation and
interpretation
I Late adopters are a control group for early adopters
I But early adopters are also a control group for late adopters
I Heterogeneous treatment effects may lead to severe bias
I Estimate depends on many factors: variation in treatment,

group sizes, etc

Decomposition shows:
I βDD is a (strange) weighted average of 2 × 2 comparisons
I We can only estimate the ATT under restrictive assumptions
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Difference in Treatment Timing
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2 × 2 Comparisons of DiDs
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Treated vs. Untreated I

Each treatment group considered separately:
I identified by canonical DiD model
I Compares units over the entire sample period

48 / 83



Treated vs. Untreated II
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Treated at Different Times I

No untreated group
I identified by difference in timing only
I think about it as a level shift
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Treated at Different Times II

Late vs. early after the early group has been treated
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All the 2 × 2 Pairs

treated vs. untreated δ̂2×2
kU =

(
ypost(k)

k − ypre(k)
k

)
−

(
ypost(k)

U − ypre(k)
U

)
early vs. late δ̂2×2

kl =

(
ymid(k ,l)

k − ypre(k)
k

)
−

(
ymid(k ,l)

l − ypre(k)
l

)
late vs. early δ̂2×2

lk =

(
ypost(l)

l − ymid(k ,l)
l

)
−

(
ypost(l)

k − ymid(k ,l)
k

)
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The Decomposition Theorem

Goodman-Bacon (2018) shows that the two-way FE model is a
weighted average of all the 2 × 2 DiDs

δ̂DD =
∑
k,U

skU δ̂
2×2
kU +

∑
k,U

∑
l>k

skl

[
µkl δ̂

2×2,k
kl + (1 − µkl )̂δ

2×2,l
kl

]

skU weight of treated vs. untreated group
skl weight of early vs. late adopters
µkl relative weight of comparison early-late vs. late-early
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A Look at the Weights

sku =
nk nuDk (1 − Dk )

V̂ar(D̃it )

skl =
nk nl(Dk − D l)(1 − (Dk − D l))

V̂ar(D̃it )

µkl =
1 − Dk

1 − (Dk − D l)

nk , nu, nl sample sizes of each 2 × 2 pair
Dk (1 − Dk ) Within-2 × 2-group variance in treatment
(Dk − D l)(1 − (Dk − D l)) Within-2 × 2-group variance in treatment
µkl Share of time spent under treatment

early vs. late
V̂ar(D̃it ) Overall variance in treatment (conditional on FE)
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It’s all about Weights

The weights depend on the time spent under treatment D̄
I D̄(1 − D̄) is maximized at D̄∗ = 0.5

This has profound implications for the interpretation of δ̂DD

I Units that are treated early or late receive very little weight in
the estimation

I The estimate depends on the sample period. . .
I . . . add more data points before or after, and D̄(1 − D̄) will

change!
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It’s all about Weights

Interpreting the weights is less clear for earlier-later
comparisons

The treatment variance is V = (Dk − D l)(1 − (Dk − D l)

I the earlier group is under treatment for Dk periods
I the late group is under treatment for D l periods

Numerical example: Dk = 67%, D l = 15%

I V = 0.52 × 0.48 = 0.2496
I This is close to the maximum variance of 0.52 = 0.25

Your (oh-so-simple and transparent) DD estimator gives the
greatest weight to groups whose treatment periods are 50% of
the sample period apart...
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Lessons from Decomposition Theorem, so far

δDD depends on the weights for three groups
I Treated vs. untreated
I Early vs. late
I Late vs. early (this is less obvious)

Greater weight will be given to pairs with
I big groups (i.e. many observations)
I groups that are treated closer to the middle of the sampling

period
I and treated groups whose treatment periods are half the

sample period apart

Often times a few cases dominate in the estimation of δDD
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What Parameter are We Estimating?

Average Treatment Effect on the Treated for timing group k for
year τ

ATTk (τ) = E
[
Y1

it − Y0
it | k , t = τ

]
Consider the ATT for a time window W

ATTk (τ) = E
[
Y1

it − Y0
it | k , τ ∈ W

]

Difference over time in average potential outcomes

∆Yh
k (W1,W0) = E

[
Yh

it | k ,W1

]
− E

[
Yh

it | k ,W0

]
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Average Potential Outcomes with a Trend

Source: mixtape ch. 9
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Remember the ATT in a 2 × 2 Pair

δ̂2×2
kU = E

[
Y1

j | Post
]
− E

[
Y0

j | Post
]︸                                ︷︷                                ︸

ATT

+

[
E
[
Y0

j | Post
]
− E

[
Y0

j | Pre
]]
−

[
E
[
Y0

U | Post
]
− E

[
Y0

U | Pre
]

︸                                                                            ︷︷                                                                            ︸
Non-parallel trends bias in 2 × 2 case

]

Or, more compact,

δ̂2×2
kU = ATTPost,j + ∆Y0

Post,Pre,j −∆Y0
Post,Pre,U︸                          ︷︷                          ︸

Selection bias
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Counterfactual in a 2 × 2 Pair

Source: mixtape ch. 9
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ATT in Early-vs-late Pairs

Here the late adopters are a counterfactual for early adopters

δ̂2×2
kl = ATTk (MID) + ∆Y0

k (MID,Pre) −∆Y0
l (MID,Pre)

I Trends need to be parallel until both groups are treated
I Parallel trends bias: ∆Y0

k (MID,Pre) −∆Y0
l (MID,Pre)
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ATT in Late-vs-Early Pairs

This is where things get tricky! Early adopters are a
counterfactual for late adopters

δ̂2×2
lk = ATTl,Post(l)

+ ∆Y0
l (Post(l),MID) −∆Y0

k (Post(l),MID)︸                                                 ︷︷                                                 ︸
Parallel-trends bias

− (ATTk (Post) − ATTk (Mid))︸                              ︷︷                              ︸
Heterogeneity in time bias

I Trends need to be parallel from the time the early adopter has
been treated

I But that is not enough. The treatment effect for the early
adopter needs to be constant over time
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Heterogeneous Treatment Effects

There are two types of heterogeneous treatment effects:

Heterogeneous effects across groups
I The difference in potential outcomes differs across groups
I In other words, the same treatment would lead to different

responses in different groups/units

Heterogeneous effects within groups over time
I Need to see this relative to a counterfactual time path
I The difference between the actual path and the counterfactual

changes over time
I Example: treatment pushes units onto a different time trend
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(Within-group) Treatment Effects Vary over Time

Source: Goodman-Bacon (2018)
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(Within-group) Treatment Effects Vary over Time
Previous graph:
I Treatment pushes the early adopters onto a different time

trend
I Early adopters after treatment are a control group for late

adopters
I Late adopters get the wrong counterfactual

This is not a violation of the parallel trends assumption
I After treatment, both are on the same time trend

But the bias due to time-varying treatment effects can be
severe
I In this example, the estimated treatment effect is smaller than

the true treatment effect
I ...it could even be negative (despite the true effect being

positive)
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Building Blocks of the Decomposition Theorem

δ̂DD =
∑
k,U

skU δ̂
2×2
kU +

∑
k,U

∑
l>k

skl

[
µkl δ̂

2×2,k
kl + (1 − µkl )̂δ

2×2,l
kl

]

1) Weights: recall that skU, skl , µkl depend on the variation in
treatment within a 2 × 2 pair and the pair’s sample size

2) 2 × 2 pairs (| ⇒ intermediate periods)

δ̂2×2
kU = ATTk (Post) + ∆Y0

l (Post,Pre) −∆Y0
U(Post,Pre)

δ̂2×2,k
kl = ATTk ( | ) + ∆Y0

l ( | ,Pre) −∆Y0
l ( | ,Pre)

δ̂2×2,l
lk = ATTl Post(l) + ∆Y0

l (Post(l), | ) −∆Y0
k (Post(l), | )

− (ATTk (Post) − ATTk ( | ))
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What Parameter are We Estimating?

For the canonical model, it can be shown that

plim
N→∞

δ̂DD = βDD = VWATT + VWCT −∆ATT

VWATT Variance-weighted ATT
VWCT Variance-weighted common trend
∆ATT Change in a treatment effects (within groups) over time

To identify VWATT , we need to assume (and justify) why
VWCT = ∆ATT = 0
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The Variance-Weighted ATT

Ideally, we want to estimate the ATT. The VWATT is the next best
alternative...

VWATT =
∑
k,U

σkUATTk (Post(k))

+
∑
k,U

∑
l>k

σkl

[
µklATTk ( | ) + (1 − µkl)ATTl(POST(l))

]

The VWATT = ATT if the ATTs are the same for each pair

Otherwise we identify a weighted average
I That’s what regression does: it places more weight on groups

with more variance in the treatment
I But the VWATT can be far away from the ATT if some groups

carry a heavy weight
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Variance-Weighted Common Trends
In the staggered adoption design, the common trends
assumption VWCT = 0 is more complicated than in the simple
2 × 2 DiD

VWCT =
∑
k,U

σkU

[
∆Y0

k (Post(k),Pre) −∆Y0
U(Post(k),Pre)

]
+

∑
k,U

∑
l>k

σkl

[
µkl{∆Y0

k (Mid,Pre(k)) −∆Y0
l ( | ,Pre(k))}

+ (1 − µkl){∆Y0
l (Post(l), | ) −∆Y0

k (Post(l), | )}
]

Things to note here:
I For the identification of the VWATT we do not require parallel

trends in each pair
I The weights are the same as for the VWATT
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More on Weights

Earliest and latest adopters are mainly in the control group

Observations treated in the middle are over-represented in the
treatment group
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Heterogeneous Treatment Effects over Time

∆ATT =
∑
k,U

∑
l>k

(1 − µkl)
[
ATTk (Post(l) − ATTk ( | ))

]

∆ATT is a source of bias from a change in the ATT within a group
over time
I This bias comes from the later vs. earlier comparison
I It appears whenever treatment leads to more than a level shift

(!!)
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Application: Effect of Unilateral Divorce
Stevenson & Wolfers (2006): divorce law reforms in 37 states
during 70s/80s
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Where Does the Effect Come from?
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Lessons from Goodman-Bacon (2018)

DiD, while seemingly intuitive and transparent, is actually not that
easy

As any FE regression, the estimand is a variance-weighted
average
I It does not reflect the ATT
I Differential treatment timing adds a layer of complexity
I Thus, the DiD is not easy to interpret

What to do?
I Check the weights of the 2 × 2 pairs
I Corroborate VWCT through balancing tests
I Use a different estimator altogether
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Group-Time ATT

As shown by Goodman-Bacon (2018), a major source of bias are
comparisons of late vs. early adopters
I This bias cannot be eliminated through standard

regression-based methods

? come up with an elegant non-parametric solution
I Idea: estimate the ATT separately for each group and time
I Use as control group only groups that have not yet been

treated
I Aggregate the group-time ATTs into a (weighted) ATT
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Group-Time ATT

ATT(g, t) = E[Y1
t − Y0

t |Gg = 1]

ATT(g, t) = E




Gg

E[Gg]
−

pg(X)C
1 − pg(X)

E
[

pg(X)C
1 − pg(X)

]
 (Yt − Yg−1)


C Indicator for never-treated group
Gg Indicators for groups treated at different times

Propensity score pg(X) = P(Gg = 1|X ,Gg + C = 1)
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Building Blocks of the Group-Time ATT

(Yt − Yg−1): Long differences between outcomes in period t and
the period before group g was treated


Gg

E[Gg]
−

pg(X)C
1 − pg(X)

E
[

pg(X)C
1 − pg(X)

]


The expression in parentheses is a weighting function to balance
the treated and control group on covariates
I Control units with similar characteristics to the treated groups

are getting more weight
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Further steps Callaway & Sant’Anna (2020)

Can aggregate the ATT(g, t) across time and groups
I This will allow for the estimation of more interesting

parameters

One can also use this estimator to look at pre-trends
I In TWFE models, these are inconsistently estimated

(Borusyak & Jaravel, 2016; Abraham & Sun, forthcoming)

Inference is done through bootstrapping
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Quo Vadis Diff-in-Diff?

DiD is often seen as a very transparent research design
I It is not! Especially not in the TWFE model
I There are many potential sources of bias
I The interpretation is often difficult
I And the identified parameters are not policy-relevant

Friends tell their friends not to use DiD? Not quite
I New methods help us to overcome many problems
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Quo Vadis Diff-in-Diff?

Some recent papers with methodological advances
I Testing for parallel pre-trends (Freyaldenhoven et al., 2019;

Rambachan & Roth, 2020)
I Estimating dynamic treatment effects (Borusyak & Jaravel,

2016; Abraham & Sun, forthcoming)
I Re-weighting to recover relevant parameters (Callaway &

Sant’Anna, 2020; de Chaisemartin & D’Haultfoeuille, 2019)
I Adjusting inference for (failed) pre-tests (Roth, 2019)
I Machine learning meets DiD (Athey et al., 2018)

Conclusion: Important to stay up to date!

81 / 83



References I
Abraham, Sarah, & Sun, Liyang. forthcoming. Estimating Dynamic Treatment Effects in Event Studies With

Heterogeneous Treatment Effects. Journal of Econometrics.

Angrist, Joshua, & Pischke, Jörn-Steffen. 2009. Mostly Harmless Econometrics - An Empiricist’s Companion. Princeton
University Press.

Athey, Susan, Bayati, Mohsen, Doudchenko, Nikolay, Imbens, Guido, & Khosravi, Khashayar. 2018. Matrix Completion
Methods for Causal Panel Data Models. Oct.

Autor, David. 2003. Outsourcing at Will: The Contribution of Unjust Dismissal Doctrine to the Growth of Employment
Outsourcing. Journal of Labor Economics, 21(1), 1–42.

Borusyak, Kirill, & Jaravel, Xavier. 2016. Revisiting Event Study Designs. Harvard University, mimeo.

Callaway, Brantly, & Sant’Anna, Pedro H. C. 2020. Difference-in-Differences with Multiple Time Periods. Journal of
Econometrics.

Card, David, & Krueger, Alan. 1994. Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New
Jersey and Pennsylvania. American Economic Review, 84(4), 772–93.

Cortés, Patricia, & Pan, Jessica. 2013. Outsourcing Household Production: Foreign Domestic Workers and Native Labor
Supply in Hong Kong. Journal of Labor Economics, 31(2), 327–371.

Cunningham, Scott. 2020. Causal Inference: The Mixtape. Yale University Press.

de Chaisemartin, Clement, & D’Haultfoeuille, Xavier. 2019. Two-way Fixed Effects Estimators with Heterogeneous
Treatment Effects. NBER Working Papers, 25904(May).

Duflo, Esther. 2001. Schooling And Labor Market Consequences Of School Construction In Indonesia: Evidence From An
Unusual Policy Experiment. American Economic Review, 91(4), 795–813.

Freyaldenhoven, Simon, Hansen, Christian, & Shapiro, Jesse M. 2019. Pre-event Trends in the Panel Event-Study Design.
American Economic Review, 109(9), 3307–38.

Goodman-Bacon, Andrew. 2018 (September). Difference-in-Differences with Variation in Treatment Timing. Working
Paper 25018. National Bureau of Economic Research.

Kahn-Lang, Ariella, & Lang, Kevin. 2020. The Promise and Pitfalls of Differences-in-Differences: Reflections on 16 and
Pregnant and Other Applications. Journal of Business & Economic Statistics, 38(3), 613–620.

82 / 83



References II

Lafortune, Julien, Rothstein, Jesse, & Schanzenbach, Diane Whitmore. 2018. School Finance Reform and the Distribution
of Student Achievement. American Economic Journal: Applied Economics, 10(2), 1–26.

Rambachan, Ashesh, & Roth, Jonathan. 2020. An Honest Approach to Parallel Trends. Harvard University, mimeo.

Roth, Jonathan. 2019. Pre-test with Caution: Event-study Estimates After Testing for Parallel Trends.

Schmidheiny, Kurt, & Siegloch, Sebastian. 2020. On Event Studies and Distributed-Lags in Two-way Fixed Effects Models:
Identification, Equivalence, and Generalization.

Stevenson, Betsey, & Wolfers, Justin. 2006. Bargaining in the Shadow of the Law: Divorce Laws and Family Distress*.
The Quarterly Journal of Economics, 121(1), 267–288.

83 / 83


	References

