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Marginal Treatment Effects

Main Sources:
Carneiro et al. (2011), Cornelissen et al. (2016)

Mogstad et al. (2018), Mogstad & Torgovitsky (2018)
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Marginal Treatment Effects (MTE)

MTE is a (very important and useful) generalization of IV

Point of departure: LATE
I Remember: with heterogeneous treatment effects...
I IV estimates the average treatment effect for the compliers

(LATE)

The estimate depends on the group of compliers whose behavior
is changed by the instrument
I different instruments give you different results
I even if all instruments are valid
I ...because the complier population may differ between

instruments
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Marginal Treatment Effects (MTE)

LATE is often not an interesting policy parameter
I it is defined by the group of compliers
I unless the instrument is the policy, LATE is not determined by

the policy
I it may not coincide with the Target Parameter

Potentially policy-relevant parameters:
I Average Treatment Effect (ATE)
I Average Treatment Effect on the Treated (ATT)
I Average Treatment Effect on the Untreated (ATU)
I Policy-relevant Treatment Effect (PRTE)

PRTE: effect on a subpopulation that is shifted into treatment by
a policy (more later)
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Set-up

Binary treatment D ∈ {0, 1}

Observed vs. potential outcomes

Yi = DYi1 + (1 − D)Yi0

Instrument Z affects the likelihood of choosing the treatment
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Potential Outcomes: The Roy Model

Assume unobserved and observed determinants are separable

Yi1 = µ1 + Ui1

Yi0 = µ0 + Ui0

With E(Uij) = 0

∆i = Yi1 − Yi0 = µ1 − µ0︸  ︷︷  ︸
observed

+ Ui1 − Ui0︸    ︷︷    ︸
unobserved
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Treatment Effect: Common and Individual Gains from
Treatment

The individual treatment effect has an important interpretation

∆i = Yi1 − Yi0 = µ1 − µ0︸  ︷︷  ︸
observed

+ Ui1 − Ui0︸    ︷︷    ︸
unobserved

µ1 − µ0 is the common gain from treatment for all individuals

Ui1 − Ui0 is the individual gain from treatment. This may vary
across individuals.
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Modelling Treatment Choice (linear case)

Latent net benefit of choosing the (binary) treatment

D∗ = α + βZi + Vi

Zi observed, instrument(s)
−Vi unobserved resistance to treatment

continuously distributed with E(Vi = 0)

It is possible to add |observed determinants of treatment choice X
to the above equation

Treatment is chosen if the net gain is positive

D = 1 if D∗ ≥ 0,D = 0 otherwise

Note: D∗ is unobservable
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The Corresponding Regression Model

Suppose we want to estimate E(∆i) using the equation

Yi = µ0 + ∆iDi + Ui0.

We know that the individual treatment effect is

∆i = Yi1 − Yi0 = µ1 − µ0 +Ui1 − Ui0

= E(∆i) +Ui1 − Ui0

Therefore, the regression equation becomes

Yi = µ0 + E(∆i)Di + Ui0 + Di[Ui1 − Ui0]

= µ0 + E(∆i)Di + εi .

In an OLS regression, the coefficient of interest is E(∆i)
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Selection Bias

The problem here is that the treatment also determines the error
term εi and, thus, E(εiDi) , 0

More formally E(εiDi) = E(Ui1|Di = 1) ∗ Pr(Di = 1)

If selection into treatment is not random, the estimation of the
average treatment effect E(∆i) suffers from selection bias

E(Yi |Di = 1)−E(Yi |Di = 0) = E(∆i)︸︷︷︸
True ATE

+ E(Ui1|Di = 1) − E(Ui0|Di = 0)︸                                   ︷︷                                   ︸
Selection Bias
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Selection Bias

Selection bias has two components:
I E(Ui1|Di = 1) the unobservable outcome of the treated in

case of treatment
I E(Ui0|Di = 0) the unobservable outcome of the untreated in

case of no treatment

These expectations are the same under two conditions:
I Treatment was randomly assigned
I Compliance with the assignment is 100%

If units select into treatment, we cannot consistently estimate
the ATE due to selection bias!

11 / 65



Implications of Selection Bias

In randomized experiments:
I None if compliance is perfect, i.e. Pr(Di = 1|Zi) = 1
I With imperfect compliance Pr(Di = 1|Zi) < 1: we still estimate

a causal effect, but not the ATE.
I Is the ATE such an interesting parameter? We’ll see later...

In observational studies:
I We have an omitted variable bias unless we find a credible

identification strategy (e.g. a valid instrument)
I And even with a credible identification strategy, we may not

consistently estimate the ATE
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Overcoming Selection Bias: Control Functions

Heckman (1978) developed a method to overcome selection bias

I Idea: estimate the extent of selection bias and control for it

We start with constant treatment effects, Ui1 = Ui0, ∆ = µ1 − µ0

and a model with covariates Xi

Yi = µ + γXi + ∆Di + Ui

D∗ = α + βZi + Vi

Di =

{
1 if D∗i ≥ 0
0 if D∗i < 0

Assume: E(Ui) = E(Vi) = 0 but Cov(Di ,Ui) , 0 (endogenous
dummy variable model)
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Switching Regression Model

Regime Di = 1 D∗i ≥ 0 Vi ≥ −α − βZi Yi = µ + γXi + ∆ + Ui

Regime Di = 0 D∗i < 0 Vi < −α − βZi Yi = µ + γXi + Ui

Because of endogenous selection into treatment
(cov(Di ,Ui) , 0, the expectation of the error terms Ui within each
regime is not zero.

This means that the regression is misspecified and our
estimates for ∆ are inconsistent

E(Ui |Vi ≥ −α − βZi) , E(Ui) = 0

E(Ui |Vi < −α − βZi) , E(Ui) = 0

Heckman (1978) shows how these expectations can be estimated
based on distributional assumptions
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Key Ingredient: Truncated Normal Distributions
Assume that U and V are jointly normally distributed with
I mean zero E(U) = E(V) = 0
I standard deviations σU and σV

I covariance σUV

I Pearson correlation ρUV

Let φ(·) be the standard normal density and Φ(·) its CDF. Some
useful properties of truncated normal distributions are:

E
{

U
σU
|

U
σU

> a
}

=
φ (a)

1 − Φ (a)

E
{

U
σU
|

U
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= −
φ (b)

Φ (b)

E
{

U
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| a <

U
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< b
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=
φ (a) − φ (b)

Φ (b) − Φ (a)

The expressions on the right are known as the Inverse Mills’
Ratios
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Key Ingredient: Truncated Normal Distributions

Important properties of truncated joint normal distributions:
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⇒ based on parametric assumptions about the joint distribution of
U and V , we can obtain estimators for selectivity.
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Heckman’s Two-step Procedure

Step 1: estimate the degree of selectivity
I Use probit to estimate α and β of the participation equation

D∗ = α + βZi + Vi

I Calculate the Inverse Mills Ratio (IMR) for each regime

λ1 =
φ
(
−α̂ − β̂Zi

)
1 − Φ

(
−α̂ − β̂Zi

) =
φ
(
α̂ + β̂Zi

)
Φ

(
α̂ + β̂Zi

)
λ0 =

φ
(
−α̂ − β̂Zi

)
Φ

(
−α̂ − β̂Zi

) =
φ
(
α̂ + β̂Zi

)
1 − Φ

(
α̂ + β̂Zi

)
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Heckman’s Two-step Procedure

Step 2: include the IMRs into the regression equations for each
regime:

Yi = µ + γXi + ∆ + ρ1λ1i + νi

Yi = µ + γXi + ρ0λ0i + νi

We can estimate both with OLS and obtain the estimate for ∆ by
comparing the two constants. This can also be estimated with
maximum likelihood.

Because the inclusion of λ1, λ0 controls for selectivity as a function
of unobserved resistance to treatment, it is also called a control
function

Note: ρ1 and ρ0 are estimators for σUσUV and −σUσUV ,
respectively
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Summary: Heckman’s Two-step Procedure

The Heckman (1978) method provides a first (?) solution for
eliminating selection bias

It explicitly models selection into treatment

And provides a statistical methodology for estimating
unobservable selection into treatment

We can obtain consistent estimates for the ATE by including a
control function for selectivity
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Summary: Heckman’s Two-step Procedure

It is important to have a valid instrument
I The instrument must not have a direct effect on the outcome
I Finding such an instrument is challenging...

Most software packages have in-built procedures

In related work, Heckman (1979) applied this method to sample
selection as a specification error

This method is less commonly used today, but it is important for
understanding IV and MTE!
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What Effect are We really after?

So far, the goal was to consistently estimate the ATE
I What is the effect of treatment for the average person...
I is this really so interesting?
I And having heard about LATE, can we actually obtain an

estimate for the ATE?

Researchers need to take a stand on the population to which
their findings apply
I Common discrepancy: the population of interest vs...
I the population about which our data is informative
I LATE is a case in point⇒ how interesting are compliers?

Just because an effect is causal doesn’t mean it’s interesting...
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Heterogeneous Treatment Effects

In most cases, the treatment effects (i.e. returns to treatment)
vary in the population

Examples:
I Free childcare: rich vs. poor families, older vs. younger people
I Job training: high- vs low-skilled workers, older vs. younger

workers, etc

If units cannot be forced to be treated, we should expect those to
take the treatment for whom it is most beneficial
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Heterogeneous Treatment Effects
Bjorklund & Moffitt (1987) incorporate heterogeneous
treatment effects into a selection model

Yi = Xiβ + αiDi + ε with Di = 1 if D∗i > 0

D∗i = αi − φi

αi = Ziδ + ui

φi = Wiη + vi

E(εi) = E(ui) = E(vi) = 0

Idea:
I Units select into treatment if the gains αi are greater than the

costs φi

I Zi and Wi are shifters of the gains and costs (i.e. potential
instruments)

I Gains and costs differ across units, σu, σv > 0
I It is possible that εi , ui and vi are correlated
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Marginal Treatment Effects: Bjorklund & Moffitt (1987)

The reduced form of the model is

Yi = Xiβ + Ziδ + εi + ui , if Di = 1
Yi = Xiβ + εi , if Di = 0
Di = 1 if D∗i > 0; Di = 0 otherwise
D∗i = Ziδ −Wiη + ui − vi

Define further
si =

−Ziδ + Wiη

σu−v

The inverse Mills’ ratio is

λi =
f(si)

1 − F(si)
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Marginal Treatment Effects: Bjorklund & Moffitt (1987)

Based on truncated normal distributions, one can quantify
several economically interesting effects

Expected gain from treatment for those who select into treatment

E (αi | Di = 1,Ziδ,Wiη)

= Ziδ + E (ui | ui − vi > −Ziδ + Wiη)

= Ziδ + (σu,u−v/σu−v) λi

Change in the expected gain from a change in costs

∂
E (αi | Ti = 1,Ziδ,Wiη)

∂ (Wiη)
=

[
(σu,u−v) /σ2

u−v

]
λi (λi − si) > 0

⇒ a reduction in costs lowers the average returns to treatment
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Marginal Treatment Effects: Bjorklund & Moffitt (1987)

They derive similar effects for the outcome, E(Yi | . . . ).

Key insights from the model:
I An instrument affects selection into treatment at the margin
I The estimated effects depend on who the instrument shifts

into or out of treatment
I With parametric assumptions, marginal treatment effects

can be estimated

26 / 65



Back to the Roy Model

Basic set-up:
Yi1 = µ1 + Ui1

Yi0 = µ0 + Ui0

D∗ = α + βZi + Vi

E(Uij) = 0

Individual treatment effect

∆i = Yi1 − Yi0 = µ1 − µ0︸  ︷︷  ︸
common gain

+ Ui1 − Ui0︸    ︷︷    ︸
idiosyncratic gain

Using this framework, we will revisit the question "What parameter
does (and should) our estimator identify?"
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LATE and other Parameters Revisited

ATE(x) ≡ E[Y1 − Y0|X = x] = µ1(x) − µ0(x)

ATT(x) ≡ E[Y1 − Y0|X = x,D = 1]

= µ1(x) − µ0(x) + E[U1 − U0|X = x,D = 1]

ATU(x) ≡ E[Y1 − Y0|X = x,D = 0]

= µ1(x) − µ0(x) + E[U1 − U0|X = x,D = 0]

LATE(x) ≡ E[Y1 − Y0|X = x,D1 > D0]

= µ1(x) − µ0(x) + E[U1 − U0|X = x,D1 > D0]
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How Relevant are ATE, ATT and ATU?

Even ATE, ATT and ATU may not be the most policy-relevant
parameters
I They assume that individuals cannot choose whether to

take the treatment
I In most cases this is neither feasible nor interesting

ATE: average effect if all individuals were forced to take the
treatment

ATT: average loss for the treated group when switching from a
regime with optional treatment to no treatment

ATU: average gain in the control group if treatment were made
mandatory
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The Policy-Relevant Treatment Effect

Idea goes back to Heckman & Vytlacil (2001a): consider a policy
change that
I affects the propensity score P(Xi ,Zi)

I without affecting potential outcomes (Yi0,Yi1) or unobserved
selection Vi

⇒ changes who selects into treatment

Treatment choices:
I Di treatment choice under baseline policy
I D̃i treatment choice under alternative policy
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The Policy-Relevant Treatment Effect

PRTE: Mean effect of going from a baseline to an alternative
policy per net person shifted

PRTE(x) =
E [Yi |Xi = x, alternative policy ] − E [Yi |Xi = x, baseline policy ]

E [Di |Xi = x, alternative policy ] − E [Di |Xi = x, baseline policy ]

= µ1(x) − µ0(x)

+
E

[
U1i − U0i |Xi = x, D̃i = 1

]
E

[
D̃i |Xi = x

]
− E [U1i − U0i |Xi = x,Di = 1]E [Di |Xi = x]

E
[
D̃i

]
Xi = x

]
− E [Di |Xi = x]
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LATE and other Parameters

LATE coincides with ATE, ATT, ATU and PRTE if one of two
conditions is met

1) If treatment effects are homogeneous

2) If treatment effects are heterogeneous but individuals do not
select into treatment based on their treatment effects
I unrealistic outside experiments (and even within if there is

imperfect compliance)
I Those with the largest gains should be most likely to

comply
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Marginal Treatment Effects (MTE)

How to get from LATE to ATE or PRTE?
I Need to extrapolate to always- and never-takers
I This requires making strong assumptions

Enter Marginal Treatment Effects....
I approach allows to recover policy-relevant parameters
I by relying on continuous or at least non-binary instruments
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Marginal Treatment Effects (MTE)

MTE explicitly models the selection into treatment

It is based on potential outcomes (similar to LATE)

Potential outcome equations are decomposed into
I an observed component
I and an unobserved component

The "MTE Curve" relates
I the unobserved heterogeneity in the treatment effect
I to the unobserved heterogeneity in the propensity of taking

the treatment
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The Marginal Treatment Effect (MTE)

For given v and x, the Marginal Treatment Effect is

MTE(v , x) ≡ E[Y1 − Y0|V = v ,X = x]

The MTE is a function of unobservable and observable
characteristics

It allows for heterogeneity in treatment effects along both
dimensions

Usually MTE declines with v: treatment is chosen by people with
the largest gains
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Our Goal: the MTE Curve
Example from Carneiro et al. (2011): returns to education

Higher U: higher resistance to treatment
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Marginal Treatment Responses

Mogstad & Torgovitsky (2018) split the MTE in separate marginal
treatment responses (MTR) for the treated and control group

m0(v , x) ≡ E [Y0|V = v ,X = x] and m1(v , x) ≡ E [Y1|V = v ,X = x]

Advantage of MTRs:
I many interesting parameters can be re-written as weighted

averages of m0 and m1

I the weights are often asymmetric
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Numerical Example

From Mogstad & Torgovitsky (2018): effect of mosquito nets (D)
on malaria (Y )
I Z is a randomly assigned subsidy with different levels

Z ∈ {1, 2, 3, 4}
I propensity scores p(z) ∈ {0.12, 0.29, 0.48, 0.78}

Next slide shows:
I malaria infections are lower in the treatment group
I people with the biggest gains are most likely to buy a net
⇒ heterogeneous treatment effects
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Numerical Example
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The Target Parameter

The target parameter β? for any policy can be expressed as the
weighted average of the two unknown MTR functions

β? ≡ E
[∫ 1

0
m0(v ,X)ω?0 (v ,X ,Z)dv

]
+E

[∫ 1

0
m1(v ,X)ω?1 (v ,X ,Z)dv

]

ω?0 and ω?1 are weighting functions
I weight of each observation in the MTR
I these need to be chosen or estimated
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Weighting Functions for Common Parameters

From Mogstad & Torgovitsky (2018). Note: they use u instead of v. More intuition
on the next slide
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Weighting Functions for Common Parameters

⇒: ATE, ATT and ATU differ in their weights, as do LATEs
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Identification Assumptions Revisited

Independence of the Instrument

(U0,U1,V) ⊥ Z |X

Standard LATE assumptions: strong first stage, monotonicity

No need to assume:
I independence of V and Uj ; unobserved returns (U1 − U0) and

resistance to treatment can be correlated
I independence of X and Uj
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Propensity to be Treated

Let FV be the CDF of V

Propensity score:

P(z) = Pr(D = 1|Z = z,X = x) = FV (µD(X ,Z))

Convention in the MTE literature: define UD = FV (V)

I UD is the quantile of the resistance distribution
I UD is uniformly distributed

Treatment choice depends on the instrument⇒ observed
encouragement exceeds unobserved resistance

D = 1 if P(z) ≥ UD

44 / 65



Back to LATE and a Binary Instrument

For a given value X = x and a binary instrument, the Wald
Estimator is

Wald (x) =
E[Y |Z = 1,X = x] − E[Y |Z = 0,X = x]

E[D |Z = 1,X = x] − E[D |Z = 0,X = x]

And the LATE is

LATE(x) = E [Y1 − Y0|D1 > D0,X = x]
=µ1(X) − µ0(X) + E [U1 − U0|D1 > D0,X = x]

⇒ effect of treatment on the compliers
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LATE with a Continuous Instrument
MTE becomes a lot more insightful with a continuous instrument.
Think about it as pairwise comparisons of values of Z

Consider a pair of values z and z′. The pairwise Wald Estimator
becomes

Wald (z, z′, x) =
E [Yi |Zi = z,Xi = x] − E [Yi |Zi = z′,Xi = x]

E [Di |Zi = z,Xi = x] − E [Di |Zi = z′,Xi = x]

Assume that moving from z′ to z shifts units into treatment

E[D |Z = Z ,X = x] > E [D |Z = z′,X = x]

The pairwise LATE for given x is

LATE (z, z′, x) = E [Y1 − Y0|P (z′) < UD < P(z),X = x]

⇒ ATE for those complying with the change of the instrument
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Compliers with a Continuous Instrument

Example from Cornelissen et al. (2016) (Z: distance to college)

Decreasing Z from 120 to 90 shifts individuals with
0.5 < UD < 0.75 into treatment
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We Can’t Compare all Values of z

Sol: use a finite number of bins
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2SLS with a Continuous Instrument

To obtain the LATE for X = x, we fit a line through this cloud of
points...

Source: Cornelissen et al. (2016)
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2SLS with a Continuous Instrument

To obtain the overall IV estimator, we obtain the LATE for every
value of X = x

The IV estimator is the variance-weighted average of all LATEs

IV =
∑
x∈X

ω(x) LATE(x)

Weights are equal to the contribution of units with X = x to the first
stage
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Back to the Marginal Treatment Effect

MTE (X , uD) = E (Y1 − Y0|X = x,UD = uD)
= µ1 (Xi) − µ0 (Xi) + E (U1 − U0|X = x,UD = uD)

Interpretation: treatment effect of a person
I with observable characteristics x
I who is at the uth

D quantile of the distribution of V

An individual with uD = 0.1 and a propensity score P(Z = z) = 0.1
is indifferent between taking the treatment or not
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The Marginal Treatment Effect

For a given X and P(z), the MTE is given by

MTE (X = x,UD = p) =
∂E(Y |X = x,P(Z) = p)

∂p

I Let individuals with UD = p0 be indifferent to taking the
treatment or not

I Increasing p by a small amount dp shifts them into
treatment

I Their marginal treatment effect at p0 is MTE(UD = p0)

I The increase in the average outcome for that group is
dY = dp ×MTE(UD = p0)

Therefore: dY
dp = MTE(UD = p0)

52 / 65



How to Estimate the MTE

Challenge: we don’t know U1,U0,V

Solution 1: parametric estimation (Bjorklund & Moffitt, 1987)
I assume (U1,U0,V) ∼ N(0,Σ)

I estimate with ML; assumptions too strong

Solution 2: fully non-parametric (Heckman & Vytlacil, 1999,
2001b, 2005)
I separate flexible function Y(P(Z)) for each group defined by

X = x
I very demanding on the data

Solution 3: shape restrictions (Cornelissen et al., 2016)
I linear separable potential outcomes Yj = Xjβj + Uj

I MTE curve independent of X
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Estimating MTE under Linear Separability and Shape
Restrictions

Under these assumptions, the MTE becomes additively
separable

MTE (x, uD) = E (Y1i − Y0i |Xi = x,UDi = uD)

= x (β1 − β0)︸       ︷︷       ︸
observed component

+ E (U1i − U0i |UDi = uD)︸                        ︷︷                        ︸
unobserved component

This leads to the outcome equation

E [Yi |Xi = x,P(Z) = p] = Xiβ0 + Xi (β1 − β0) p + K(p)

K(p) is a non-linear function of the propensity score
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Estimating MTE under Linear Separability and Shape
Restrictions

The Marginal Treatment Effect is then given by

MTE (Xi = x,UDi = p) =
∂E [Yi |Xi = x,P(Z) = p]

∂p
= x (β1 − β0)+

∂K(p)

∂p

What to do with K(p)?
I model as polynomial of p
I semi- or non-parametric modelling
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How to Estimate the MTE

1) Estimate the propensity score p̂ with probit or logit

2) Model Y as a function of X , Xp̂ and p̂

Example from Cornelissen et al. (2018)

Y = Xβ0 + Rα + Tτ + X (β1 − β0) p̂ +
K∑

k=2

αk p̂k + ε

3) Calculate the derivative of Ŷ wrt p̂ at given values of X

4) plot the MTE curve

Packages: localIV in R, margte in Stata
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Example: Marginal Gains to Early Childcare

Cornelissen et al. (2018) study the effect of early childcare
attendance on school readiness

They exploit the staggered introduction of free childcare (age
3-6) in Germany

Instrument is the number of available childcare slots before age
3

Questions asked with MTE:
I Which children are most likely to select into childcare?
I Which children have the highest causal effects?
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Selection into Treatment
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Common Support
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The MTE Curve

Higher UD (resistance): lower probability of treatment
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Compare with 2SLS
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Lessons from Cornelissen et al. (2018)

Children with small gains select into childcare, those with high
gains don’t

Gains are large for those least likely to attend childcare

An IV estimator would have given no weight to children with
very high vs. very low likelihood of attending childcare
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Extrapo-LATE-ing

MTE requires an instrument with broad support
I Most instruments do not fall into this category
I They have some support, but they don’t have the potential to

shift everyone into treatment

Mogstad et al. (2018) show how MTE can be used to extrapolate
from the LATE to support not covered by the instrument

Idea:
I Make assumptions about MTEs outside the support [u, ū]

I Construct bounds on the target parameter
I Bounds are tighter the closer the support to [u, ū]

For an application, see Brinch et al. (2017)
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Summary: MTE

MTE is useful and informative because
I It explicitly models treatment choice
I It characterizes heterogeneous treatment effects
I It allows for the estimation of policy-relevant parameters

Downsides:
I Requires a large dataset
I Requires a credible instrument with broad support

More advanced methods are summarized in Mogstad &
Torgovitsky (2018)
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